Synthesis of trisphaeridine and norchelerythrine through palladium-catalyzed aryl-aryl coupling reactions

Takashi Harayama,* Hisashi Akamatsu, Kana Okamura, Taeko Miyagoe, Toshihiko Akiyama, Hitoshi Abe and Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan. E-mail: harayama@pharm.okayama-u.ac.jp; Fax: +81(86)2517963

Received (in Cambridge, UK) 27th October 2000, Accepted 11th January 2001
First published as an Advance Article on the web 7th February 2001

Total syntheses of trisphaeridine (3) and norchelerythrine (4), fully aromatized phenanthridine and benzo[c]phenanthridine alkaloids, were accomplished via the internal aryl-aryl coupling reaction of halo amides protected by a methoxymethyl group with the palladium reagent, followed by reduction with lithium aluminium hydride and treatment with hydrochloric acid.

Introduction

Fully aromatized benzo[c]phenanthridine alkaloids have a broad range of potent pharmacological activities such as antitumour and antiviral activities, and inhibition of DNA topoisomerase I..$^{1-12}$ Therefore, attention is still focused on the development of convenient and effective methods for synthesizing these alkaloids. ${ }^{1-5,13,14}$ However, the reported methods have several disadvantages such as numerous steps, low total yield and/or lack of generalizability. We have been studying the development of more rapid and versatile synthetic methods for these alkaloids and recently developed a convenient method for the synthesis of chelerythrine (1) ${ }^{15}$ and nitidine (2), ${ }^{16}$ quaternary benzo[c]phenanthridine alkaloids, using an internal aryl-aryl coupling reaction assisted by palladium. To examine the general applicability of this method for synthesizing benzo[c]phenanthridine alkaloids, we attempted to apply this method to the synthesis of trisphaeridine (3) ${ }^{17,18}$ and norchelerythrine (4), ${ }^{1}$ tertiary phenanthridine and benzo[c]phenanthridine alkaloids. For the synthesis of these alkaloids, ring closure of secondary amides such as $\mathbf{5 a}$ and $\mathbf{6 a}$ is expected to be a more direct and convenient method. Ames and Opalko reported in 1984 that 5a possessing a halogen atom on the benzoyl ring did not give rise to a cyclized product, whereas $\mathbf{6 a}$ possessing a halogen atom on the aniline ring provided the expected product (7a) in poor to moderate yield. ${ }^{19}$ However, we speculated that a tertiary amide (5b), which was protected by the methoxymethyl (MOM) group, could be converted to an N-MOM lactam (7b) with the assistance of a Pd reagent, because the cyclization reaction of a tertiary N-methylamide ($\mathbf{5 c}$) proceeded smoothly and gave the desired product in high yield. ${ }^{15}$ Moreover, we supposed that $\mathbf{7 b}$ could be transformed to a fully aromatized tertiary base (8) by successive treatment with LiAlH_{4} and HCl .

Results and discussion

We began our studies with the biaryl coupling reaction of amides $\mathbf{5 b}$ and $\mathbf{6 b}$ by means of a Pd reagent as a preliminary experiment. These amides were prepared by reaction of secondary amides $5 \mathbf{a}^{20}$ and $\mathbf{6 a}{ }^{21}$ with dimethoxymethane in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$ in yields of 62 and 85%, respectively, and then the cyclization reaction using the Pd reagent was examined. The results are summarized in Table 1. The reaction generally gave the desired product in good to excellent yield, and in the pres-

chelerythrine (1)
$\mathrm{R}^{1}=\mathrm{OMe} \cdot \mathrm{R}^{2}=\mathrm{H}$
nitidine (2)
$R^{1}=H, R^{2}=O M e$

trisphaeridine (3)

norchelerythrine (4)

6a: $\mathrm{R}=\mathrm{H}$
6b:R = MOM
5b: $\mathrm{R}=\mathrm{MOM}$
5c: $\mathrm{R}=\mathrm{Me}$

8
$7 a: R=H$
7b : R = MOM
ence or absence of a bidentate ligand provided $\mathbf{7 b}$ in high yield. Reduction of 7b with LiAlH_{4} followed by treatment with HCl gave phenanthridine ($\mathbf{8})^{22}$ in a yield of 54%.

Table 1 Results of the cyclization reaction of 2-iodo- N-methoxymethyl- N-phenylbenzamide (5b) or N-(2-iodophenyl)- N methoxymethylbenzamide (6b) to 5-methoxymethylphenanthridin-6(5H)-one (7b) in DMF under reflux ${ }^{a}$

	Run	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (eq.)	Ligand	Base	Time/min	Yield of 7b (\%)
5b	1	0.1	-	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	97
	$2^{\text {b }}$	0.1	-	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	180	88
	3	0.1	-	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	40	84
	4	0.1	$\mathrm{PPh}_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	94
	5	0.1	$\mathrm{PPh}_{3}(2)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	60	91
	6	0.1	$\mathrm{PPh}_{3}(2)$	AcONa	20	97
	7	0.1	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	90	97
	8	0.1	$\mathrm{DPPP}^{c}{ }^{\text {(1) }}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	30	94
	9	0.1	$\mathrm{DPPP}^{c}(1)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	40	91
6b	10	0.1	-	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	89
	11	0.1	$\mathrm{PPh}_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	83
	12	0.1	$\mathrm{PPh}_{3}(2)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	40	82
	13	0.1	$\mathrm{DPPP}^{c}{ }^{(1)}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	87

${ }^{a}$ All reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio of $1: 2$ and 2 mol equivalents of base. ${ }^{b}$ Reaction temperature: $130{ }^{\circ} \mathrm{C}$. ${ }^{c} \mathrm{DPPP}$: 1,3-bis(diphenylphosphino)propane.

Table 2 Results of cyclization reactions of 2-bromo- N-methoxymethyl-4,5-methylenedioxy- N-phenylbenzamide (12a) to 5-methoxymethyl-8,9-methylenedioxyphenanthridin-6(5H)-one (13) in DMF under reflux ${ }^{a}$

Run	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (eq.)	Ligand	Base	Time/h	Yield (\%)	
					13	S.M. ${ }^{\text {b }}$
1	0.1	PPh_{3}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	3	59	27
2	0.1	$\mathrm{P}(o-\mathrm{Tol})_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	6.5	73	-
3	0.1	$\mathrm{P}(0-\mathrm{Tol})_{3}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	2	75	-
4	0.2	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1.5	81	-
5	1.0	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	0.5	89	-

${ }^{a}$ All reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio of $1: 2$ and 2 mol equivalents of base. ${ }^{b}$ S.M. $=$ starting material.

9a: $X=B r$
9b: $X=H$
$+$

10a: $Y=H$
10b: $Y=1$
\qquad

11a: $R=H, X=B r, Y=H$
11b: $R=H, X=H, Y=I$
12a: $R=M O M, X=B r, Y=H$
12b: $R=M O M, X=H, Y=I$

Scheme 1

Next, we applied this methodology to the synthesis of trisphaeridine (3), ${ }^{23}$ a tertiary phenanthridine alkaloid, which has been isolated from a few plants of Amaryllidaceae. ${ }^{17,18}$ We planned the synthetic route for $\mathbf{3}$ as shown in Scheme 1.

Starting materials (12) for the cyclization reaction were prepared by methoxymethylation of the corresponding secondary amides (11), which were synthesized from 6-bromopiperonylic acid (9a) ${ }^{24}$ and aniline (10a), and from piperonylic acid (9b) and 2-iodoaniline (10b), respectively (Scheme 1). Thus, successive treatment of the acids with oxalyl chloride and anilines in the presence of triethylamine afforded 11, which was methoxymethylated with chloromethyl methyl ether in the presence of sodium hydride in DMF to give bromo amide (12a) and iodo amide (12b) in yields of 62 and 67%, respectively. Subsequently,
the cyclization reaction of $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ using the Pd reagent was examined and the results are summarized in Tables 2 and 3, respectively. The reaction of $\mathbf{1 2 a}$ provided the expected product 13 in good to excellent yield, especially with the use of $\mathrm{P}(o-\mathrm{Tol})_{3}$ as a phosphine ligand. On the other hand, 12b, which possesses an iodo group as a leaving group on the aniline part, gave 14, which was formed by connection to a more hindered carbon, as a major product along with $\mathbf{1 3}$ as a minor product. The influence of oxygen substituent(s) on the cyclization position is now under investigation in our laboratory. Reduction of $\mathbf{1 3}$ with LiAlH_{4} followed by treatment with HCl gave trisphaeridine (3) ${ }^{17,18}$ in a yield of 54%. The spectral data of the synthetic material were in good agreement with the reported data of an authentic sample. ${ }^{18,23 e}$

Table 3 Results of cyclization reactions of N-(2-iodophenyl)- N-methoxymethyl-3,4-methylenedioxybenzamide (12b) in DMF under reflux ${ }^{a}$

Run	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (eq.)	Ligand	Base	Time/h	Yield (\%) of $\mathbf{1 3 + 1 4}$	$\mathbf{1 3}: \mathbf{1 4}$
1	0.1	PPh_{3}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2	73	$1: 4$
2	0.1	PPh_{3}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	2	72	$1: 4.9$

${ }^{a}$ All reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio of $1: 2$ and 2 mol equivalents of base.

Table 4 Results of cyclization reactions of 6-iodo-2,3-dimethoxy- N-methoxymethyl- N-(6,7-methoxydioxy-1-naphthyl)benzamide (18) in DMF under reflux ${ }^{a}$

Run	$\mathrm{Pd}(\mathrm{OAc})_{2}$ (eq.)	Ligand (L : Pd)	Base	Time/min	Yield (\%)	
					19	20
1	0.2	-	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	300	10	-
2	0.2	$\mathrm{PPh}_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	51	13
3	1.0	$\mathrm{PPh}_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	30	76	20
4	0.2	PPh_{3} (2)	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	30	70	18
5	0.2	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}(2)$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	74	16
6	0.2	$\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}(2)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	40	96	1
7	0.2	DPPP (1)	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	61	14

${ }^{a}$ All reactions were carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio of $1: 2$ and 2 mol equivalents of base.

15

16

17: $\mathrm{R}=\mathrm{H}$
18: R = MOM

20

Scheme 2

Subsequently, total synthesis of norchelerythrine (4) ${ }^{233,25}$ was investigated by applying the synthetic strategy described above. Since o-halobenzoic acid is likely to be more accessible than o-haloaniline and cyclization reaction of $\mathbf{1 2 b}$ with a halo group on the aniline part using a Pd reagent yielded two products, we designed a route for the synthesis of 4 through an amide (18) that is protected by the MOM group and possesses a halo group on the benzoyl part, as shown in Scheme 2. Methoxymethylation of the amide $17,{ }^{15}$ which was synthesized from the acid $(\mathbf{1 5})^{26}$ and the amine (16), ${ }^{15}$ with chloromethyl methyl ether in the presence of NaH gave the protected amide $\mathbf{1 8}$ in a yield of 87%. The coupling reaction of amide $\mathbf{1 8}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, a phosphine ligand and a base in DMF under reflux afforded 19 in good to excellent yield, accompanied by a small amount of benzazepinone (20) ${ }^{27}$ as shown in Table 4 (see runs 3-6). A combination of $\mathrm{P}(o-\mathrm{Tol})_{3}$ and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ was the most effective combination of additives. The structures of the products 19 and 20 were elucidated on the basis of spectral data, especially ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data in which 20 showed two singlet signals due to aromatic protons, whereas 19 showed only one singlet signal due to an aromatic proton (see Experimental). Moreover, in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra the signals attributable to the methylene protons of the MOM group appeared extraordinarily broad in CDCl_{3} solution, whereas the signal appeared as a broad singlet at $\delta 5.00$ in d_{6}-DMSO solution at
$80^{\circ} \mathrm{C}$. Reduction of $\mathbf{1 9}$ with LiAlH_{4} and subsequent treatment with HCl provided $4(92 \%)$, which was identical with an authentic sample.

Experimental

Melting points were measured on a micro melting point hotstage apparatus (Yanagimoto) and are quoted as uncorrected values. IR spectra were recorded for samples in KBr pellets with a JASCO A-102 or JASCO FT/IR 350 spectrophotometer, and ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded in deuteriochloroform on a Hitachi R-1500 (60 MHz), Varian VXR-200 (200 MHz) or $-500(500 \mathrm{MHz})$ spectrometer unless otherwise stated. NMR data are reported in ppm downfield from tetramethylsilane as an internal standard ($\delta 0.0$) and coupling constants are given in hertz. Mass spectra were obtained on a VG-70SE spectrometer. Column chromatography was carried out on silica gel (Merck, silica gel 60 , No. 9385) or aluminium oxide (Wako, about 300 mesh). All experiments were carried out in an argon atmosphere and the extract was washed with brine, dried over anhydrous MgSO_{4}, then filtered, and the filtrate was evaporated to dryness under reduced pressure, unless otherwise noted. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was treated with boiling benzene and the mixture was filtered while hot. The hot filtrate was then concentrated to dryness to give purified $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{28}$

2-Iodo- N-methoxymethyl- N-phenylbenzamide (5b)

To a stirred solution of amide $5 \mathbf{5}(200 \mathrm{mg}, 0.619 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}\left(12 \mathrm{~cm}^{3}\right)$ was added dimethoxymethane $\left(14 \mathrm{~cm}^{3}, 158\right.$ mmol) and phosphorus pentaoxide (2.0 g), and the mixture was stirred for 5 h at rt . The mixture was poured into aqueous 5% $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with ether. The residue was dissolved in benzene and subjected to column chromatography on alumina. Elution with benzene-hexane ($2: 1$) afforded $\mathbf{5 b}$ $(141 \mathrm{mg}, 62 \%)$ as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.55(3 \mathrm{H}$, br s, OCH_{3}), $5.28\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{2} \mathrm{O}\right)$ and $6.96-7.79(9 \mathrm{H}, \mathrm{m}$, aromatic protons); $m / z(\mathrm{FAB}) 368\left(\mathrm{M}^{+}+1\right)$. Found: C, 49.2; H, 3.9; $\mathrm{N}, 3.6 \%$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{INO}_{2}$: C, $49.1 ; \mathrm{H}, 3.8 ; \mathrm{N}, 3.8 \%$.

N-(2-Iodophenyl)- N -methoxymethylbenzamide (6b)

To a stirred solution of amide $\mathbf{6 a}(200 \mathrm{mg}, 0.619 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}\left(12 \mathrm{~cm}^{3}\right)$ was added dimethoxymethane $\left(14 \mathrm{~cm}^{3}, 158\right.$ $\mathrm{mmol})$ and phosphorus pentaoxide (2.0 g), and the reaction mixture was stirred for 46 h at rt . The mixture was poured into aqueous $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with ether. The residue dissolved in benzene was subjected to column chromatography on alumina. Elution with benzene afforded 6b (194 $\mathrm{mg}, 85 \%$) as colorless prisms, $\mathrm{mp} 70-71.5^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 1650 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.63(1 \mathrm{H}, \mathrm{d}$, $\left.J 10.0, \mathrm{NCH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 5.70\left(1 \mathrm{H}\right.$, br d, $\left.J 10.0, \mathrm{NCH}_{\mathrm{A}} H_{B} \mathrm{O}\right)$ and $6.95-7.90\left(9 \mathrm{H}, \mathrm{m}\right.$, aromatic protons); $m / z(\mathrm{EI}) 367\left(\mathrm{M}^{+}\right)$. Found: C, $49.0 ; \mathrm{H}, 4.2 ; \mathrm{N}, 3.8 \%$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{INO}_{2}: \mathrm{C}, 49.1 ; \mathrm{H}, 3.8$; N, 3.8\%.

General procedure for the cyclization reaction of N-methoxymethylbenzanilides 5b and 6b by palladium reagent

Reaction of benzanilide $(36.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, a phosphine ligand, and a base in dry DMF ($4 \mathrm{~cm}^{3}$) was carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and the ligand in a ratio of $1: 2$ and 2 mol equivalents of base under reflux and under the reaction conditions indicated in Table 1. The reaction mixture was diluted with benzene and the precipitates were removed by filtration. The filtrate was washed with brine. The residue dissolved in benzene was subjected to column chromatography on silica gel. Elution with hexane-AcOEt (4:1) gave 5-methoxymethyl-phenanthridin- $6(5 \mathrm{H})$-one (7b) as colorless prisms, $\mathrm{mp} 93-94{ }^{\circ} \mathrm{C}$ (from ether); $v_{\max } / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $5.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{O}\right)$ and $7.27-8.62(8 \mathrm{H}, \mathrm{m}$, aromatic protons). Found: C, $75.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 5.8 \%$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 75.3; H, 5.5; N, 5.9\%.

Phenanthridine (8)

$\mathrm{LiAlH}_{4}(68.3 \mathrm{mg}, 1.80 \mathrm{mmol})$ was added to a solution of $\mathbf{7 b}$ ($144 \mathrm{mg}, 0.60 \mathrm{mmol}$) in dry THF ($7 \mathrm{~cm}^{3}$) and the mixture was stirred for 2 h at rt . Excess hydride was decomposed with wet ether and the organic layer was decanted. The residue in THF $\left(3 \mathrm{~cm}^{3}\right)$ was treated with $6 \mathrm{M} \mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$ for 1 h under reflux. The reaction mixture was poured into aqueous sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with CHCl_{3}. The residue in CHCl_{3} was subjected to chromatography on silica gel. Elution with hexane-AcOEt ($6: 1$) gave $\mathbf{8}(58 \mathrm{mg}, 54 \%)$ as colorless prisms, $\mathrm{mp} 103-105^{\circ} \mathrm{C}$ (from EtOH-hexane) (lit. ${ }^{22} \mathrm{mp} \mathrm{104-105}{ }^{\circ} \mathrm{C}$); m / z (EI) $170\left(\mathrm{M}^{+}\right)$. Found: C, 87.1; H, 5.4; N, 7.8\%. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}: \mathrm{C}, 87.1 ; \mathrm{H}, 5.1 ; \mathrm{N}, 7.8 \%$.

2-Bromo-4,5-methylenedioxy- N-phenylbenzamide (11a)

Oxalyl chloride ($3.33 \mathrm{~g}, 26.3 \mathrm{mmol}$) was added to a solution of 6-bromopiperonylic acid (9a) ($3.0 \mathrm{~g}, 13.1 \mathrm{mmol}$) in dry THF $\left(120 \mathrm{~cm}^{3}\right)$ containing twenty drops of dry DMF at $10^{\circ} \mathrm{C}$. The stirred mixture was refluxed for 3 h , and then concentrated to dryness under reduced pressure. To this residue was added a solution of aniline ($\mathbf{1 0 a}$) $(1.21 \mathrm{~g}, 13.1 \mathrm{mmol})$ in dry THF $\left(60 \mathrm{~cm}^{3}\right)$ and dry $\mathrm{NEt}_{3}\left(2.18 \mathrm{~cm}^{3}, 15.7 \mathrm{mmol}\right)$ and the mixture
was stirred for 3 h at rt . The reaction mixture was concentrated to dryness and diluted with CHCl_{3}, then washed with $10 \% \mathrm{HCl}$, aqueous $5 \% \mathrm{NaOH}$ solution and brine. The residue was dissolved in benzene and the solution was subjected to column chromatography on silica gel. Elution with hexane-AcOEt ($6: 1$) gave 11a $(3.12 \mathrm{~g}, 74 \%)$ as colorless needles, mp 149$152{ }^{\circ} \mathrm{C}$ (from ether); $v_{\max } / \mathrm{cm}^{-1} 3280$ and $1660 ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $6.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.03(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.16$ $\left(1 \mathrm{H}, \mathrm{t}, J 7.8,4^{\prime}-\mathrm{H}\right), 7.37\left(2 \mathrm{H}, \mathrm{t}, J 7.8,3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.62(2 \mathrm{H}$, $\mathrm{d}, J 7.8,2^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $7.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$. Found: C, $52.3 ; \mathrm{H}, 3.2 ; \mathrm{N}, 4.3 \%$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrNO}_{3}$: C, 52.5; H, 3.2; N, 4.4\%.

\boldsymbol{N}-(2-Iodophenyl)-3,4-methylenedioxybenzamide (11b)

Oxalyl chloride ($3.05 \mathrm{~g}, 24.1 \mathrm{mmol}$) was added to a solution of piperonylic acid (9 b) $(2.0 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ containing ten drops of dry DMF at $10^{\circ} \mathrm{C}$. The stirred mixture was refluxed for 2.5 h , and concentrated to dryness under reduced pressure. To this residue was added a solution of 2iodoaniline ($\mathbf{1 0 b}$) $(2.63 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ and dry $\mathrm{NEt}_{3}\left(2.01 \mathrm{~cm}^{3}, 14.4 \mathrm{mmol}\right)$ and the mixture was stirred for 3 h at rt . The reaction mixture was concentrated to dryness and diluted with AcOEt , then washed with $10 \% \mathrm{HCl}$, aqueous 5% NaOH solution and brine. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Elution with hexane-AcOEt ($5: 1$) gave $\mathbf{1 1 b}(3.53 \mathrm{~g}, 80 \%)$ as colorless needles, mp $122-124.5^{\circ} \mathrm{C}$ (from ether); $v_{\text {max }} / \mathrm{cm}^{-1} 3260$ and $1650 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 6.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.88(1 \mathrm{H}$, ddd, $J 7.9$, 7.8 and $\left.1.6,4^{\prime}-\mathrm{H}\right), 6.92(1 \mathrm{H}, \mathrm{d}, J 8.2,5-\mathrm{H}), 7.40(1 \mathrm{H}$, ddd, $J 7.8$, 7.8 and $\left.1.6,5^{\prime}-\mathrm{H}\right), 7.45(2 \mathrm{H}, \mathrm{d}, J 1.8,2-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $1.8,6-\mathrm{H}), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J 7.8\right.$ and $\left.1.6,6^{\prime}-\mathrm{H}\right), 8.16(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{NH})$ and $8.42\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and $\left.1.6,3^{\prime}-\mathrm{H}\right)$. Found: C, 45.7 ; H, $3.0 ; \mathrm{N}, 3.7 \%$. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{INO}_{3}: \mathrm{C}, 45.8 ; \mathrm{H}, 2.7 ; \mathrm{N}, 3.8 \%$.

2-Bromo- N-methoxymethyl-4,5-methylenedioxy- N-phenylbenzamide (12a)

To a suspension of $\mathbf{1 1 a}(1.0 \mathrm{~g}, 3.12 \mathrm{mmol})$ and $\mathrm{NaH}(360 \mathrm{mg}$, 63% dispersion in mineral oil, 9.37 mmol) in dry DMF ($50 \mathrm{~cm}^{3}$) was added chloromethyl methyl ether ($378 \mathrm{mg}, 4.69 \mathrm{mmol}$). After stirring for 5 h at rt , the reaction mixture was diluted with ether and washed with aqueous sat. NaHCO_{3} solution and brine. The residue was dissolved in CHCl_{3} and subjected to column chromatography on alumina. Elution with hexaneAcOEt (4:1) gave 12a ($955 \mathrm{mg}, 84 \%$) as an oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.20(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{O}\right), 5.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.63(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H})$ and $7.26(5 \mathrm{H}$, br s, aromatic protons); $m / z(\mathrm{FAB}) 364$ $\left(\mathrm{M}^{+}+1\right)$.

N-(2-Iodophenyl)- N-methoxymethyl-3,4-methylenedioxbenzamide (12b)

To a suspension of $\mathbf{1 1 b}(300 \mathrm{mg}, 0.82 \mathrm{mmol})$ and $\mathrm{NaH}(94 \mathrm{mg}$, 63% dispersion in mineral oil, 2.45 mmol) in dry THF ($12 \mathrm{~cm}^{3}$) was added chloromethyl methyl ether ($99 \mathrm{mg}, 1.23 \mathrm{mmol}$). After stirring for 1.5 h at rt , the reaction mixture was diluted with ether and washed with aqueous sat. NaHCO_{3} solution and brine. The residue was dissolved in CHCl_{3} and subjected to column chromatography on alumina. Elution with hexaneAcOEt (4:1) gave 12b ($283 \mathrm{mg}, 84 \%$) as pale yellow prisms, mp $77-79{ }^{\circ} \mathrm{C}$ (from ether); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{NCH}_{A} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 5.60(1 \mathrm{H}$, br d, $\left.J 10.0, \mathrm{NCH}_{\mathrm{A}} H_{B} \mathrm{O}\right), 5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and 6.55-7.92 $(7 \mathrm{H}, \mathrm{m}$, aromatic protons). Found: C, $47.0 ; \mathrm{H}, 3.3 ; \mathrm{N}, 3.3 \%$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{INO}_{4}$: C, $46.7 ; \mathrm{H}, 3.4 ; \mathrm{N}, 3.4 \%$.

General procedure for the cyclization reaction of bromo- N methoxymethylbenzanilide (12a) by palladium reagent
Reaction of $\mathbf{1 2 a}(180 \mathrm{mg}, 0.5 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, a phos-
phine ligand, and a base in dry DMF ($12 \mathrm{~cm}^{3}$) was carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio of $1: 2$ and 2 mol equivalents of base under reflux and under the reaction conditions indicated in Table 2. The reaction mixture was diluted with ether-AcOEt ($1: 1$) and the precipitates were removed by filtration. The filtrate was washed with brine. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Elution with hexane-AcOEt $(6: 1)$ gave 5 -meth-oxymethyl-8,9-methylenedioxyphenanthridin-6(5H)-one (13) as colorless needles, $\mathrm{mp} 180-182^{\circ} \mathrm{C}$ (from AcOEt); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1640 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{O}\right)$, $6.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.30(1 \mathrm{H}$, ddd, $J 8.2,7.0$ and $1.4,2-\mathrm{H})$, $7.48(1 \mathrm{H}$, ddd, $J 8.1,7.0$ and $1.4,3-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.60$ $(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $1.4,4-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $8.04(1 \mathrm{H}$, dd, $J 8.2$ and $1.4,1-\mathrm{H})$. Found: C, 67.6 ; H, 4.4; N, 4.9%. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 67.8 ; \mathrm{H}, 4.6 ; \mathrm{N}, 5.0 \%$.

General procedure for the cyclization reaction of iodo- N -methoxymethylbenzanilide (12b) by palladium reagent

Reaction of 12b ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) with $\mathrm{Pd}(\mathrm{OAc})_{2}(5.5 \mathrm{mg}$, $0.025 \mathrm{mmol})$, triphenylphosphine ($12.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), and two mol equivalents of base as indicated in Table 3 in dry DMF $\left(3 \mathrm{~cm}^{3}\right)$ was carried out for 2 h . The reaction mixture was diluted with ether and the precipitates were removed by filtration. The filtrate was washed with brine. The residue was dissolved in CHCl_{3} and subjected to column chromatography on alumina. Elution with hexane $-{ }^{i} \mathrm{Pr}_{2} \mathrm{O}(2: 1)$ gave $\mathbf{1 3}, \mathrm{mp} 178-$ $179^{\circ} \mathrm{C}$ and successive elution with the same solvent gave 5-methoxymethyl-9, 10 -methylenedioxyphenanthridin- $6(5 \mathrm{H})$-one (14) as colorless needles, $\mathrm{mp} 183-185^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1600 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.81$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2} \mathrm{O}\right), 6.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.09(1 \mathrm{H}, \mathrm{d}, J 8.5$, $8-\mathrm{H}), 7.30(1 \mathrm{H}$, ddd, $J 8.2,8.2$ and $1.3,2-\mathrm{H}), 7.50(1 \mathrm{H}$, ddd, $J 8.2,8.2$ and $1.4,3-\mathrm{H}), 7.59(1 \mathrm{H}$, dd, $J 8.2$ and $1.3,4-\mathrm{H}), 8.19$ $(1 \mathrm{H}, \mathrm{d}, J 8.5,7-\mathrm{H})$ and $8.62(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $1.4,1-\mathrm{H})$. Found: C, $67.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.9 \%$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 67.8; H, 4.6; N, 5.0%.

The ratio of products was determined by HPLC (column, chemosorb 5 Si ; eluent, hexane-AcOEt (1:3); flow rate, 1.0 ml min^{-1}; wavelength, $254 \mathrm{~nm} ; t_{\mathrm{R}}$ for $\mathbf{1 3}=7.2 \mathrm{~min} ; t_{\mathrm{R}}$ for $\mathbf{1 4}=6.4$ min).

Trisphaeridine (3)

$\mathrm{LiAlH}_{4}(59.4 \mathrm{mg}, 1.57 \mathrm{mmol})$ was added to a solution of $\mathbf{1 3}(89$ $\mathrm{mg}, 0.31 \mathrm{mmol})$ in dry THF $\left(9 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 3 h at rt. Excess hydride was decomposed with wet ether and the organic layer was decanted. A solution of the residue in $10 \% \mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$ was stirred for 1 h at $80^{\circ} \mathrm{C}$. The reaction mixture was poured into aqueous $5 \% \mathrm{NaOH}$ solution and extracted with CHCl_{3}. The organic layer was washed with brine. The residue in CHCl_{3} was subjected to chromatography on alumina. Elution with CHCl_{3} gave $3(38 \mathrm{mg}, 54 \%)$ as colorless prisms, $\mathrm{mp} 142.5-144^{\circ} \mathrm{C}$ (from hexane) (lit. ${ }^{23 e} \mathrm{mp} 144.5-$ $\left.145^{\circ} \mathrm{C}\right) ; m / z(\mathrm{FAB}) 224\left(\mathrm{M}^{+}+1\right)$. Found: C, 69.6; H, 4.7; N, 5.8%. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.7 ; \mathrm{H}, 4.6 ; \mathrm{N}, 5.8 \%$.

6-Iodo-2,3-dimethoxy- N -methoxymethyl- N -(6,7-methylenedi-oxy-1-naphthyl)benzamide (18)

A suspension of $\mathbf{1 7}(1.0 \mathrm{~g}, 2.1 \mathrm{mmol})$ and $\mathrm{NaH}(380 \mathrm{mg}, 63 \%$ dispersion in mineral oil, 6.3 mmol) in dry DMF ($30 \mathrm{~cm}^{3}$) was stirred for 2 h at rt and then chloromethyl methyl ether (254 mg , 3.2 mmol) was added to the reaction mixture. After stirring for 2 h at rt , the reaction mixture was diluted with ether and washed with brine. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Elution with hexane-AcOEt ($2: 1$) gave $\mathbf{1 8}(951 \mathrm{mg}, 87 \%$) as colorless prisms, mp $152-153{ }^{\circ} \mathrm{C}$ (from ether-hexane); $v_{\max } / \mathrm{cm}^{-1} 1660$; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 3.19-4.89\left(11 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{OCH}_{3}\right.$ and $\mathrm{NCH}_{2} \mathrm{O}$, rotamer), $6.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J 8.5,4-\mathrm{H}), 7.58$
($1 \mathrm{H}, \mathrm{d}, J 8.5,5-\mathrm{H}$) and $7.03-7.65(5 \mathrm{H}, \mathrm{m}$, aromatic protons); $\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 522\left(\mathrm{M}^{+}+1\right)$. Found: C, $50.7 ; \mathrm{H}, 3.8 ; \mathrm{N}, 2.7 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{INO}_{6}: \mathrm{C}, 50.7 ; \mathrm{H}, 3.9 ; \mathrm{N}, 2.7 \%$.

General procedure for the cyclization reaction of iodo- N -methoxymethylbenzanilide (18) by palladium reagent

Reaction of $\mathbf{1 8}(260 \mathrm{mg}, 0.5 \mathrm{mmol})$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$, a phosphine ligand, and a base in dry DMF $\left(15 \mathrm{~cm}^{3}\right)$ was carried out using $\mathrm{Pd}(\mathrm{OAc})_{2}$ and ligand in a ratio $1: 2$ and 2 mol equivalents of base under reflux and under the reaction conditions indicated in Table 4. The reaction mixture was diluted with benzene and the precipitates were removed by filtration. The filtrate was washed with brine. The residue was dissolved in benzene and subjected to column chromatography on silica gel. Elution with hexane-AcOEt ($2: 1$) gave 9,10-dimethoxy-7-methoxymethyl-1,2-methylenedioxynaphtho[1,8-cd][2]benzazepin-8(7H)-one
(20) and successive elution with the same solvent gave 7,8-dimethoxy-5-methoxymethyl-2,3-methylenedioxybenzo[c]phen-anthridin-6(5H)-one (19).

Compound 20: $\mathrm{mp} 178-179^{\circ} \mathrm{C}$ (from ether-hexane) as colorless prisms; $v_{\text {max }} / \mathrm{cm}^{-1} 1660 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.12(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.94(1 \mathrm{H}, \mathrm{d}, J 8.8,11-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.25(1 \mathrm{H}$, dd, $J 7.6$ and $7.4,5-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8.8,12-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{dd}$, $J 7.4$ and $1.4,4-\mathrm{H})$ and $7.56(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.4,6-\mathrm{H})$; $\left(500 \mathrm{MHz}, d_{6}\right.$-DMSO, $\left.80^{\circ} \mathrm{C}\right) 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.84(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.00\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2} \mathrm{O}\right), 6.23(2 \mathrm{H}$, $\left.\mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.13(1 \mathrm{H}, \mathrm{d}, J 9.0,11-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $7.29(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $7.5,5-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{d}, J 9.0,12-\mathrm{H}), 7.47$ $(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.0,4-\mathrm{H})$ and $7.49(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.0 , 6-H). Found: C, $67.2 ; \mathrm{H}, 5.0 ; \mathrm{N}, 3.5 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 67.2; H, 4.9; N, 3.6\%.

Compound 19: mp 199-200 ${ }^{\circ} \mathrm{C}$ (from ether-hexane) as colorless prisms; $v_{\text {max }} / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{O}\right)$, $6.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.12(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8.5,9-\mathrm{H})$, $7.50(1 \mathrm{H}, \mathrm{d}, J 8.5,12-\mathrm{H}), 7.95(1 \mathrm{H}, \mathrm{d}, J 8.5,9-\mathrm{H})$ and $8.38(1 \mathrm{H}$, s, 4-H). Found: C, $67.2 ; \mathrm{H}, 5.1 ; \mathrm{N}, 3.6 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 67.2; H, 4.9; N, 3.6\%.

Norchelerythrine (4)

$\mathrm{LiAlH}_{4}(43.4 \mathrm{mg}, 1.14 \mathrm{mmol})$ was added to a solution of 19 ($149 \mathrm{mg}, 0.38 \mathrm{mmol}$) in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 30 min at rt . Excess hydride was decomposed with wet ether and the organic layer was decanted. A solution of residue in THF $\left(10 \mathrm{~cm}^{3}\right)$ and $10 \% \mathrm{HCl}\left(25 \mathrm{~cm}^{3}\right)$ was stirred for 1 h at rt . The reaction mixture was poured into aqueous sat. NaHCO_{3} solution and extracted with CHCl_{3}. The organic layer was washed with brine. The residue was recrystallized from benzene-hexane to provide $4(116 \mathrm{mg}, 92 \%)$ as pale yellow prisms, mp $217-219^{\circ} \mathrm{C}$ (from hexane) (lit. ${ }^{25 a} \mathrm{mp} 212-214{ }^{\circ} \mathrm{C}$, lit. ${ }^{25 c} \mathrm{mp} 213-215^{\circ} \mathrm{C}$).

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research (No. 11672103) from the Ministry of Education, Science, Sports, and Culture. The authors are indebted to Dr J. Bastida, University of Barcelona, Faculty of Pharmacy, for providing us with copies of spectral data for trisphaeridine and to the SC-NMR Laboratory of Okayama University for the NMR experiments.

References

1 V. Simanek, The Alkaloids, ed. A. Brossi, Academic Press, New York, 1985, vol. 26, p. 185.
2 J. Dostal and M. Potacek, Collect. Czech. Chem. Commun., 1990, 55, 2840.

3 M. Suffness and G. A. Cordell, The Alkaloids, ed. A. Brossi Academic Press, New York, 1985, vol. 25, p. 178.
4 S. P. MacKay, O. Meth-Cohn and R. D. Waigh, Adv. Heterocycl. Chem., 1997, 67, 345.
5 T. Ishikawa and H. Ishii, Heterocycles, 1999, 50, 627.
6 J. M. Herbert, J. M. Augereau, J. Gleye and J. P. Maffrand, Biochem. Biophys. Res. Commun., 1990, 172, 993.
7 S.-D. Fang, L.-K. Wang and S. M. Hecht, J. Org. Chem., 1993, 58, 5025.

8 T. Nakanishi and M. Suzuki, J. Nat. Prod., 1998, 61, 1263.
9 C. Vavreckova, I. Gawlik and K. Müller, Planta Med., 1996, 62, 397.
10 T. Schmeller, B. Latz-Brüning and M. Wink, Phytochemistry, 1997, 44, 257.
11 T. Nakanishi, M. Suzuki, A. Saimoto and T. Kabasawa, J. Nat. Prod., 1999, 62, 864; and references cited therein.
12 F. Fleury, A. Sukhanova, A. Ianoul, J. Devy, I. Kudelina, O. Duval, A. J. P. Alix, J. C. Jardillier and I. Nabiev, J. Biol. Chem., 2000, 275, 3501.

13 I. Ninomiya and T. Naito, Recent Dev. Chem. Nat. Carbon Compd., 1984, 10, 11.
14 Recent papers for synthesis of benzo[c]phenanthridine alkaloids: (a) T. Nakanishi and M. Suzuki, Org. Lett., 1999, 1, 985; and references cited therein; (b) G. R. Geen, I. S. Mann, M. V. Mullane and A. McKillop, Tetrahedron, 1998, 54, 9875; (c) T. Ishikawa, T. Saito and H. Ishii, Tetrahedron, 1995, 51, 8447; (d) T. Minami, A. Nishimoto and M. Hanaoka, Tetrahedron Lett., 1995, 36, 9505; (e) D. Seraphin, M. A. Lynch and O. Duval, Tetrahedron Lett., 1995, 36, 5731.

15 T. Harayama, T. Akiyama and K. Kawano, Chem. Pharm. Bull., 1996, 44, 1634.
16 T. Harayama and K. Shibaike, Heterocycles, 1998, 49, 191.
17 O. Hoshino, The Alkaloids, ed. A. Brossi, Academic Press, New York, 1998, vol. 51, p. 323.

18 F. Viladomat, M. Selles, C. Codina and J. Bastida, Planta Med., 1997, 63, 583.
19 D. E. Ames and A. Opalko, Tetrahedron, 1984, 40, 1919.
20 D. H. Hey, G. H. Jones and M. J. Perkins, J. Chem. Soc. (C), 1971, 116.

21 W. R. Bowman, H. Heaney and B. M. Jordan, Tetrahedron, 1991, 47, 10119.

22 S. V. Kessar, R. Gopal and M. Singh, Tetrahedron, 1973, 29, 167.
23 Papers for synthesis: (a) S. V. Kessar, D. Pal and M. Singh, Tetrahedron, 1973, 29, 177; (b) S. V. Kessar, Y. P. Gupta, P. Balakrishnan, K. K. Sawal, T. Mohammad and M. Dutt, J. Org. Chem., 1988, 53, 1708; (c) S. Prabhakar, A. M. Lobo and M. R. Tavares, J. Chem. Soc., Chem. Commun., 1978, 884; (d) A. M. Rosa, A. M. Lobo, P. S. Branco, S. Prabhakar and A. M. D. L. Pereira, Tetrahedron, 1997, 53, 269; (e) M. G. Banwell and C. J. Cowden, Aust. J. Chem., 1994, 47, 2235; (f) H. Q. Yang and J. C. Cai, Youji Ниахие, 1997, 17, 234; (g) H. W. Shao and J. C. Cai, Chin. Chem. Lett., 1997, 8, 493.
24 J. S. Swenton, K. Carpenter, Y. Chen, M. L. Kerns and G. W. Morrow, J. Org. Chem., 1993, 58, 3308.
25 Papers for synthesis: (a) A. S. Bailey and C. R. Worthing, J. Chem. Soc., 1956, 4535; (b) V. Smula and R. H. F. Manske, Can. J. Chem., 1972, 50, 1544; (c) J. Smidrkal, Collect. Czech. Chem. Commun., 1984, 49, 1412; (d) G. R. Geen, G. I. S. Mann, M. V. Mullane and A. McKillop, Tetrahedron, 1998, 54, 9875.

26 S. F. Dyke and E. P. Tiley, Tetrahedron, 1975, 31, 561.
27 In synthetic studies on 12-methoxydihydrochelerythrine, a corresponding benzazepinone-type compound was obtained. See T. Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe and Y. Takeuchi, Synthesis, in press.

28 K. Ohrai, K. Kondo, M. Sodeoka and M. Shibasaki, J. Am. Chem. Soc., 1994, 116, 11737.

